
© Copyright Ian D. Romanick 2008

8-April-2008

VGP353 – Week 2

⇨ Agenda:
­ Shadow Textures

­ Improvements over planar projected shadows
­ Implementation details
­ Optimizations

⇨ Assignments:
­ Assignment #1 due
­ Begin assignment #2

© Copyright Ian D. Romanick 2008

8-April-2008

Planar Projected Shadows

⇨ As discussed previously, planar projected
shadows have a number of faults

© Copyright Ian D. Romanick 2008

8-April-2008

Planar Projected Shadows

⇨ As discussed previously, planar projected
shadows have a number of faults

­ No self-shadowing
­ Can only cast shadows on the ground plane

© Copyright Ian D. Romanick 2008

8-April-2008

Planar Projected Shadows

⇨ As discussed previously, planar projected
shadows have a number of faults

­ No self-shadowing
­ Can only cast shadows on the ground plane
­ Can only cast shadows on a flat ground plane

© Copyright Ian D. Romanick 2008

8-April-2008

Planar Projected Shadows

⇨ As discussed previously, planar projected
shadows have a number of faults

­ No self-shadowing
­ Can only cast shadows on the ground plane
­ Can only cast shadows on a flat ground plane

⇨ Shadow textures fix most of these problems

© Copyright Ian D. Romanick 2008

8-April-2008

Shadow Textures

⇨ Algorithm outline:
­ Render shadow caster to a texture from the point of

view of the light
­ Texture background is the color of the light
­ Object is rendered in black

­ Using projective texturing cast the shadow texture
onto each shadow receiver

­ Use the sampled texture color as the light color

© Copyright Ian D. Romanick 2008

8-April-2008

Shadow Textures

⇨ Advantages?

Original image from Battlefield 1942 © Copyright Digital Illusions CE 2002.

© Copyright Ian D. Romanick 2008

8-April-2008

Shadow Textures

⇨ Advantages?
­ Can cast shadows on non-flat surfaces
­ Can cast shadows on multiple objects

Original image from Battlefield 1942 © Copyright Digital Illusions CE 2002.

© Copyright Ian D. Romanick 2008

8-April-2008

Shadow Textures

⇨ Advantages?
­ Can cast shadows on non-flat surfaces
­ Can cast shadows on multiple objects

⇨ Disadvantages?

Original image from Battlefield 1942 © Copyright Digital Illusions CE 2002.

© Copyright Ian D. Romanick 2008

8-April-2008

Shadow Textures

⇨ Advantages?
­ Can cast shadows on non-flat surfaces
­ Can cast shadows on multiple objects

⇨ Disadvantages?
­ No self-shadowing

­ Shadow maps will solve this problem...next week

­ Requires render-to-texture pass for each shadow
caster for each light

­ Shadow receiver must sample multiple shadow
textures

Original image from Battlefield 1942 © Copyright Digital Illusions CE 2002.

© Copyright Ian D. Romanick 2008

8-April-2008

Shadow Texture Creation

⇨ Setup modelview-projection (MVP) matrix to
render from the light looking at the object

­ The eye-point is actually the light position
­ Set the FoV to just enclose the object

­ The object's bounding box is helpful here

⇨ Render object as shadow
­ Clear the color buffer to the light's color
­ Render the object as solid black

­ Can “fake” soft shadows by using distance from light (eye) to
determine color: closer to the light is darker, farther is lighter

© Copyright Ian D. Romanick 2008

8-April-2008

Determining Receiver / Caster

⇨ For each shadow texture, determine which
objects are potential receivers

­ If the object is completely on the opposite side of the
near plane from the light, it is a candidate

© Copyright Ian D. Romanick 2008

8-April-2008

Projective Texturing

⇨ Does what it says: projects a texture onto an
object

⇨ This is a perspective projection, so what is
needed to make it “work”?

© Copyright Ian D. Romanick 2008

8-April-2008

Projective Texturing

⇨ Does what it says: projects a texture onto an
object

⇨ This is a perspective projection, so what is
needed to make it “work”?

­ Divide by Z...just like perspective viewing projections
­ Uses the q texture coordinate

© Copyright Ian D. Romanick 2008

8-April-2008

Projective Texturing

⇨ Algorithm outline:
­ Use object-space vertex positions as initial texture

coordinates
­ Transform object-space texture coordinate to

projector-space
­ Apply perspective transformation

­ Same MVP matrix as is used to render to the texture

­ Scale and bias coordinates from [-1, 1] to [0, 1]
­ Unless one of the mirroring wrap modes is being used

© Copyright Ian D. Romanick 2008

8-April-2008

Projective Texturing

⇨ Uses different sampling functions in GLSL:
­ texture[123]DProj vs texture[123]D
­ Use these functions instead of doing the perspective

divide by hand
­ Cubic textures not supported. Why?

© Copyright Ian D. Romanick 2008

8-April-2008

Projective Texturing

⇨ Uses different sampling functions in GLSL:
­ texture[123]DProj vs texture[123]D
­ Use these functions instead of doing the perspective

divide by hand
­ Cubic textures not supported. Why?

­ The q component is already used as part of the texture
lookup!

© Copyright Ian D. Romanick 2008

8-April-2008

Projective Texturing

⇨ What happens if the point is behind the
projection point?
Hint: What happens if an object is behind the eye?

© Copyright Ian D. Romanick 2008

8-April-2008

Projective Texturing

⇨ What happens if the point is behind the
projection point?
Hint: What happens if an object is behind the eye?

­ It gets a negative Z (or q) value
­ The projection then “flips” the position

­ Because it divides by a negative number

© Copyright Ian D. Romanick 2008

8-April-2008

Projective Texturing

⇨ What happens if the point is behind the
projection point?
Hint: What happens if an object is behind the eye?

­ It gets a negative Z (or q) value
­ The projection then “flips” the position

­ Because it divides by a negative number

⇨ Shadows are cast on objects on the opposite
side of the light from the caster

­ Just a fact of projective texturing
­ Reject points with q less than near-plane distance

© Copyright Ian D. Romanick 2008

8-April-2008

Optimizations

⇨ Performance problems with shadow textures:
­ Lots of textures need to be generated per frame
­ Shadow receivers need to read lots of textures

⇨ General speed-up techniques:
­ Regenerate a texture only if light or caster moved
­ Generate textures for shadows that might intersect

view volume
­ Apply texture only to objects that might be shadowed
­ Composite multiple shadow textures together

© Copyright Ian D. Romanick 2008

8-April-2008

Optimizations

⇨ Generate textures for shadows that might
intersect view volume

­ Each shadow texture has an associated frustum
­ “View” frustum used to render the shadow texture

­ If the shadow's frustum intersects the view (eye)
frustum, then it might be visible

Do not generate
Generate

© Copyright Ian D. Romanick 2008

8-April-2008

Optimizations

⇨ Apply texture only to objects that might be
shadowed

­ Any object that does not intersect the shadow's
frustum is not a receiver

Apply

Don't apply

© Copyright Ian D. Romanick 2008

8-April-2008

Optimizations

⇨ Composite multiple shadow textures together
­ Many casters can affect all members of a group of

receivers
­ Create a new shadow texture by compositing all po-

tential casters shadow textures together
­ Project each shadow texture onto the near-plane

© Copyright Ian D. Romanick 2008

8-April-2008

References

Bloom, Charles. Projective Shadow Mapping [article on-line]. June 30,
2000, accessed April 4, 2008; available from
http://www.cbloom.com/3d/techdocs/shadowmap.txt; Internet.

Bloom, Charles, and Teschner, Phil. Advanced Techniques in Shadow
Mapping [article on-line]. June 3, 2001, accessed April 4, 2008;
available from
http://www.cbloom.com/3d/techdocs/shadowmap_advanced.txt;
Internet.

http://www.cbloom.com/3d/techdocs/shadowmap.txt
http://www.cbloom.com/3d/techdocs/shadowmap_advanced.txt

© Copyright Ian D. Romanick 2008

8-April-2008

Next week...

⇨ Quiz #1!
­ Shadow terminology
­ Projective planar shadows
­ Shadow textures

⇨ Assignment #2 due
⇨ Shadow maps

­ Similarities and improvements to shadow textures

© Copyright Ian D. Romanick 2008

8-April-2008

Legal Statement

This work represents the view of the authors and does not necessarily rep-
resent the view of IBM or the Art Institute of Portland.

OpenGL is a trademark of Silicon Graphics, Inc. in the United States, other
countries, or both.

Khronos and OpenGL ES are trademarks of the Khronos Group.

Other company, product, and service names may be trademarks or service
marks of others.

